

Cost-effectiveness of measures - proceedings and findings in Lower Saxony

Dr. Ann Kathrin Buchs
AnnKathrin.Buchs@mu.niedersachsen.de
Brussels March 19th 2014

Theoretical foundations meet practical water management experiences

Theoretical foundation:

What is required and how can it be classified within the methodical context?

- Several questions concerning the frame, e.g.: Which costs are referred to?
- How can economics support the achievement of the Directive's objectives?

Which methods exist to fullfill the requirement?

- Subordinated concept: cost-benefit-analysis
- A range of methods for valuation:
 - » Cost-effectiveness-analysis, value-benefit-analysis, cost-benefit-analysis, cost comparison method, multi-criteria-analysis

Water management in practice, focus on surface waters:

By 2008 there were already more than 2000 potential measures identified in an iterative process, a first expert based selection led to a prioritization of about 700 measures that present the programmatic approach up to 2015.

What kind of verification for cost-effectiveness/cost-efficiency do we want to follow?

- Itemized approach?
- Approach for overall social cost-benefit?
- Etc.?
- → And which approach will be the best in terms of practicability and efficiency?

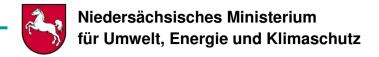
Project on cost-effectiveness

Study with following structure:

- 1. Performance of **cost-effectiveness-analysis** in line with the guidance documents and economic literature
 - → Selection of two case studies (for surface waters)
 - → Performance of cost-effectiveness-analysis for each considered site
- 2. Identification and analysis of existing institutions (structures and processes) that lead to selection and prioritization of measures:
 - → In order to seek further mechanisms that ensure the efficient achievement of the Directive's objectives
 - → To assure the use of existing institutions and identification of potentials for optimization
 - → Application of organizational efficiency as a meta criterion

Case study 1 (measure for passability)

Location: commuity in the RBD Rhine


Objective: passability in the river Dinkel: comparison of 4 alternative measures with the

aim of the re-establishment

Method: cost-efffectiveness-analysis

Basis: feasibility study

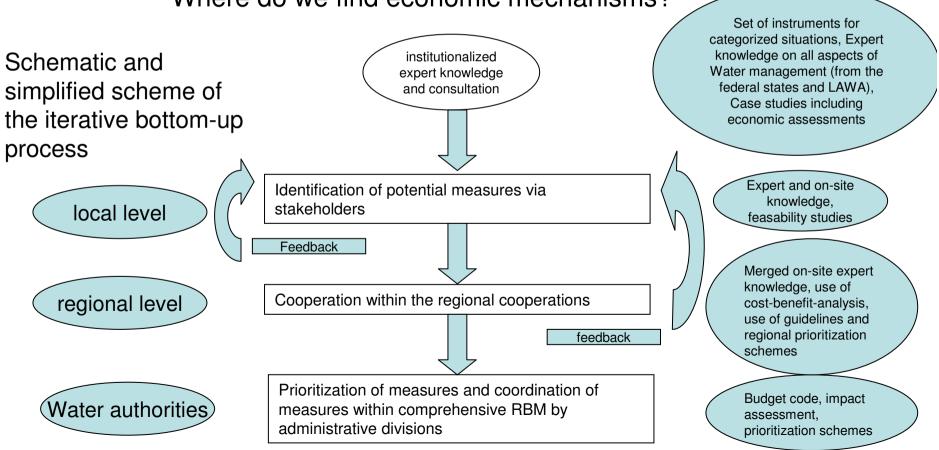
measure	Passability fishfauna	passability benthos	Appealing design	Possibility for canoe passing	Time frame	average (business) cost [€]	Economic costs
I: installation of small steps	-	+	О	-	Short term	No cost estimation	Marginal
II: "Riegelbauweise"	-	+	0	-	Short term	No cost estimation	Marginal
III: roughened spillway	+	+	О	-	Short term	~ 177.000	Marginal
IV: bypass channel	+	+	+	-	Short term	~ 193.000	Marginal

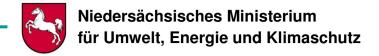
Case study 2: fruit growing sector as a water user

- Location: largest fruit-growing area in northern Lower Saxony ("Altes Land")
- Objective: combination of securement of water provision for water users and improvement of hydromorphology
- Method: cost-effectiveness-analysis
- Basis: feasibility study, Identification of measures:
- 1. Establishment of a tributory (add. water body)
- 2. Embankment widening
- 3. Re-establishment of the old tidal creek
- 4. installing disturbing elements (dead wood or rocks)
- → precondition for performing a CEA is the existence of comparable measures that have the same objective, in this case only one potential measure was feasible

Case study 2: effectiveness

measure	Add. Water supply [in m³]		Ecologi					
		Macro- phytes	Phyto- benthos	Phyto- plankton	Macro- zoo- benthos	Fish- fauna	Ecological effectiveness	time
I: Seitengewässer	56.700	+++	++	+	+++	+++	12	kurzfristig


Case study 2: cost-effectiveness


measure	Ecological effectiveness	add. water supply [m³]	Time	Investment costs [€]	Cost of maintance [€/year]	Macro- economic costs
1. Tributory	12	56.700	Short term	1.500.000	650	low

Procedural approach: analysis of existing institutions

How are measures identified and prioritized? Where do we find economic mechanisms?

Conclusions from the CEA project

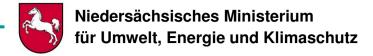
- In Lower Saxony the identification process for measures varies between water type (ground and surface waters). The study shows:
 - Measures for ground water bodies have been identified and selected through other institutions and mechanisms as those for surface waters.
 - Explicit CEA for single sites shows that the existing institutions provide mechanisms that assure an efficient outcome (cost-effective measures).
 - → But there is no golden standard: cost-effectiveness of measures can not be identified with standardized criteria within the different categories of waters nor for different sites.
- Concerning the method:
 - Proof of cost-effectiveness can be fulfilled
 - precondition for performing a CEA is the existence of comparable measures that have the same obejective (e.g. passability), this is not the case in most areas.
 - An itemized analysis of all single sites/regions is not a practical solution
- Findings:
 - Cost-effectiveness is not the single nor the ultimate criteria for the selection or prioritization of a measure.
 - Institutions play a significant role in the process of identification and prioritization of measures

Lessons learned and ideas for further procedure

Lessons learned:

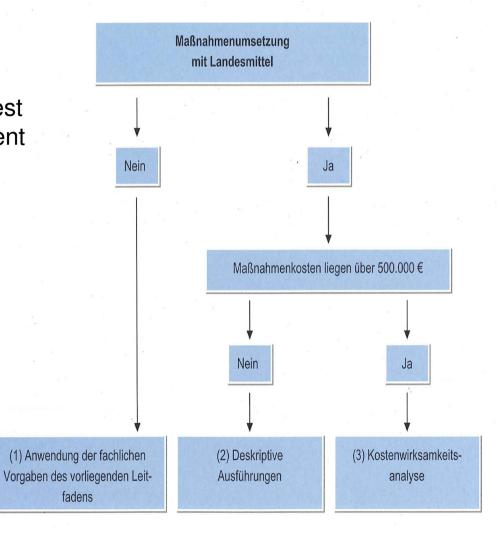
- experience show the strength of the proposed method, but also the limitations when it comes to practical water management challenges.
- time-consuming and cost-intensive for bottom up processes with very limited additional information
- → so far fulfilling the economic requirement only provided little extra information for decision making

Further procedure:


- Scheme for requirement of explicit CEA for measures
- The advanced procedures of WFD water management are linked with the procedural approach
- Methodic substanciation of the procedural approach

What are the needs:

- focus on practical needs: what are the problems, where can economics help and how?
- consideration of water management procedures and structures → therefore maybe new methodologies? Example I-Five


First ideas:

- further integration of economics into the planning process?
- not only customizable but also standardizable economic based systems for decision support?
- look into other economic disciplins, e.g. organizational efficiency, adapted controlling of public authorities (water management administration)

Scheme for requirement of CEA

As part of the latest guidance document

