

"Praxisempfehlung für niedersächsische Wasserversorgungsunternehmen und Wasserbehörden"

15.08.2013

"Oberflächennaher Rohstoffabbau in Wasserschutzgebieten"

Dr. Hans Eckl Axel Lietzow

Wasserwirtschaft – Rohstoffwirtschaft

- Argumentation -

Argumente der Wasserwirtschaft

- Grundwasser hat enorme Bedeutung für die Trinkwasserversorgung
- Sehr hohes Schutzbedürfnis

Argumente der Rohstoffwirtschaft

- Große Volkswirtschaftliche Bedeutung
 - → durchschnittlicher Verbrauch in Niedersachsen:
 - → rd. 60 bis 70 Mio. t/Jahr
 - → 8 t bis 9 t je Einwohner und Jahr
- Geringes Gefährdungspotential
- Verbesserung der Grundwasserqualität bei einer bereits vorhandenen Schadstoffbelastung (z.B. Nitrat) des GW

Bewertung des Gefährdungspotenzials

Kriterien für die Beurteilung eines Rohstoffabbaus

- Lithologie des Gesteins
- Abbautechnik/Gewinnungsverfahren
- Abbaugröße/-volumen
- Abbaumenge
- Dauer des Abbaubetriebes
- Größe des Einzugsgebietes der Fassungsanlage
- Möglicher Anteil der Abbauflächen
- Lage der Abbauflächen im WSG
- Folgenutzung
- Eigenschaften des GW-Leiters (z. B. v_m)

- Grundwasser -

Das Grundwasser kann betroffen sein durch Veränderungen

- → GW-Haushalt,
- → GW-Oberfläche & GW-Bewegung
- → GW-Beschaffenheit

Auf den GW-Haushalt durch

- Verdunstungsverluste (-)
- oberirdischer Überlauf von Seewasser (-)
- Vergrößerung des Speicherraumes (+)

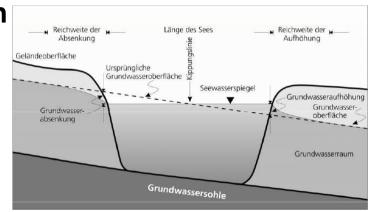
Maßnahmen zur Minderung

· z.B. Vermeidung des Überlaufs

Bewertung

• Zumeist keine merklichen Auswirkungen auf den GW-Haushalt, Verdunstungsverluste können aber im Einzelfall von Bedeutung sein.




- GW-Oberfläche und GW-Bewegung -

Veränderungen hervorgerufen durch

- Änderung der GW-Fließrichtung
- Erhöhung der GW-Fließgeschwindigkeit

- → Ausrichtung
- → Breite und Form des Sees
- → Eigenschaften des GW-Leiters (z.B. Durchlässigkeitsbeiwert)
- → Grad der Abdichtung der Seeufer

H. Eckl & J. Hahn (1994): Bodenabbau und Grundwassergewinnung. - Steine und Erden in Niedersachsen; Nds. Akademie der Geowissenschaften, Veröffentlichungen, Heft 9, Hannover 1994.

Stromlinie mit Grundwasserfließrichtung

- GW-Oberfläche und GW-Bewegung -

Auswirkungen auf das WSG

- Verlagerung der WSG-Grenzen
- Anschluss belasteter Flächen

Minderung der Auswirkungen

• auf das GW-Strömungsregime durch fachgerechte Konzipierung des Abbaus

- GW-Oberfläche und GW-Bewegung -

Bewertung

- Hydraulische Auswirkungen eines Nassabbaus können je nach Standortgegebenheiten erheblich sein.
- Die Beeinflussung des Strömungsregimes und die möglichen Auswirkungen auf die WSG-Grenzen lassen sich in der Betriebsphase jedoch mit hinreichender Genauigkeit ermitteln.
- Die erforderlichen Basisdaten sind zumeist mit vertretbaren Aufwand zu ermitteln.

Verbleibende Unsicherheiten

• Entwicklung des Sees in der Zukunft, wie z.B. zunehmende Abdichtung der Seeufer, einschl. der damit verbundenen Auswirkungen auf das GW-Strömungssystem nur eingeschränkt prognostizierbar.

- GW-Beschaffenheit -

Einflussfaktoren/Parameter auf die GW-Beschaffenheit

- Filter- u. Pufferfunktion → Reinigungsvermögen
- Schadstoffeneintrag (offene Wasserfläche)
 - Niederschlag, luftbürtige Immissionen,
 - Abschwemmung aus angrenzenden Landflächen,
 - Hochwasser, Folgenutzung,
 - Einsatz von Maschinen während der Betriebsphase
- Veränderungen des GW während der Seepassage durch physikalische, chemische und biologische Prozesse

- GW-Beschaffenheit -

Maßnahmen zur Minderung der Stoffeinträge in das GW

 Ringgraben, Schutzbepflanzungen, regelmäßige Kontrollbegehungen und GW-schonende Folgenutzung

Verbleibende Unsicherheiten

- künftige Entwicklung der Stoffeinträge (Luftpfad, Niederschläge)
- limnologische Entwicklung des Sees (Eutrophierungsgrad)

- Veränderungen bei nährstoffreichen Seen -

Nährschicht (Trophogene Zone, Epilimnion, aerober Bereich)

- Wassertemperatur hoch
- Sauerstoffübersättigung
- Verringerung des Kohlendioxid-Gehaltes
- Abnahme von z. B. Nitrat, Phosphat, Calcium, elektrische Leitfähigkeit

Sprungschicht (Kompensationszone, Metalimnion)

• Wechsel der Wassertemperatur

Zehrschicht (Tropholytische Zone, Hypolimnion, anaerober Bereich)

- Wassertemperatur niedrig, Sauerstoffmangel
- Anreicherung von Kohlendioxid
- Reaktivierung und Freisetzung u.a. von Eisen, Mangan, Phosphor
- Reduktion von Nitrat und Sulfat
- Zunahme der elektrischen Leitfähigkeit

Auswirkungen auf das GW im Abstrom des Nassabbaus

- Wechselnde Wassertemperaturen
- Schwankende Sauerstoffgehalte bis zum gänzlichen Sauerstoffentzug
- Schwankende Eisen- und Phosphat-Gehalte
- Abnahme von Nitrat, Calcium, Magnesium, Kalium
- Wechselnde pH-Werte und elektrische Leitfähigkeiten

Umfang der Auswirkungen/Einflussfaktoren

- Beschaffenheit des Seewassers und deren tages- und jahreszeitlichen Schwankungen
- Uferschlamm (Mächtigkeit, biologische und chemische Eigenschaften)
- hydrogeologischen und hydraulischen Gegebenheiten (z. B. der GW-Fließgeschwindigkeit, Anteil an oxidierbarer Substanz und ihre Verteilung im GW-Leiter)

Nassabbau als Nitratfalle

Was spricht dagegen?

- Beseitigung schützender Deckschichten
- Event. keine ausreichende Fließstrecke und Fließzeit zur Fassungsanlage
 - → Folge: Gefahr von direktem Schadstoffeintrag
 - → Funktion des Sees als Nitratfalle : keine dauerhafte Gewährleistung

Fachbehördliche Empfehlung bei Nitratproblemen

- Beseitigung der Ursachen (Maßnahmen seitens der Landwirtschaft durch gewässerschutzorientierte Zusatzberatung)
- Erhaltung der Schutzfunktion der GW-Überdeckung

Gesamtbewertung

- Starke Abhängigkeit von Standortgegebenheiten (Aquifereigenschaften u. limnologischen Gegebenheiten)
- Nur Nassabbau in der Zone IIIB (Vorrang der TW-Gewinnung)
- Abbau von Schadstoffen bei der Seepassage ("Nitratfalle")

Verbleibende Unsicherheiten/Risiken

- Künftige Stoffeinträge über die freigelegte GW-Oberfläche (Beispiel: Radioaktive Stoffe) nicht prognostizierbar
- Die limnologische Entwicklung eines Sees (Nährstoffentwicklung, Verlust an Reinigungs- und Abbauleistung des Sees durch Überbeanspruchung) nicht prognostizierbar

Empfehlungen zum Rohstoffabbau in WSG

Zweck eines Wasserschutzgebietes

• Ausschluss einer Gefährdung der TW-Gewinnung durch andere Nutzungen (grundsätzlicher Vorrang der TW-Gewinnung, aber unter Beachtung des Verhältnismäßigkeitsgrundsatzes).

Regelungen/Empfehlungen im Konsens mit den verschiedenen Interessengruppen

• z.B. in Schutzgebietsverordnungen

Empfehlungen zum Rohstoffabbau in WSG

Tab.: Empfehlungen für die Genehmigung von obertägigem Rohstoffabbau in Einzugsgebieten von Trinkwasserentnahmen (Geofakten 10, LBEG)

Schutzzone	Genehmigungsempfehlung			
	Abbau ohne Freilegung des Grundwassers		Abbau mit Freilegung des Grundwassers	
	Lockergestein	Festgestein	Lockergestein	Festgestein
Zone II	kein Abbau	kein Abbau	kein Abbau	kein Abbau
Zone III/IIIA	Abbau möglich, wenn Abstand von Zone II mind. 100 m und Restmächtigkeit mind. 2 m über höchstem zu erwartenden Grundwasser- stand*	Abbau möglich, wenn ausreichender Abstand von Zone II nach Einzelfallprüfung und Restmächtigkeit mind. 5 bzw. mind. 10 m über höchstem zu erwartenden Grundwasser- stand*	kein Abbau, außer bei Grund- wasserentnahme aus tieferem Grundwasserstock- werk**	kein Abbau, außer bei Grund- wasserentnahme aus tieferem Grundwasserstock- werk**
Zone IIIB	Abbau möglich, wenn Restmächtig- keit mind. 2 m über höchstem zu erwar- tenden Grundwas- serstand*	Abbau möglich, wenn Restmächtig- keit mind. 5 bzw. mind. 10 müber höchstem zu erwar- tenden Grundwas- serstand*	Abbau bis zu 1/3 an offenen Wasserflä- chen in der Zone III B möglich (unter Berücksichti- gung der Gesamtge- fährdungssituation)	Abbau bei Unterschreitung eines vertretbaren Anteils an offenen Wasserflächen nach Einzelfallregelung möglich (unter Berücksichti- gung der Gesamtge- fährdungssituation)

^{*} Bei Lockergesteinen sollte eine natürliche Grundwasserüberdeckung von mindestens 2 m und bei Fest-gesteinen in Abhängigkeit von der Untergrundbeschaffenheit mind. 5 m (z. B. bei tonig-mergeligen Gesteinen) bzw. mind. 10 m (z. B. bei gut geklüfteten Kalksteinen) über dem höchsten zu erwartenden Grundwasserstand verbleiben.

^{**} Die Trennschicht zum unterlagernden Entnahmestockwerk sollte schwach durchlässig, ausreichend m\u00e4chtig, geschlossen verbreitet und ungest\u00f6rt sein.

Warum wir in Niedersachsen weniger Berge haben?

Weil wir ständig welche versetzen.

In Bewegung.

Zu Lande, zu Wasser, in der Luft und sogar im Weltall ist Niedersachsen beim Thema Mobilität ganz vorn mit dabei Weil wir gern vorankommen.

Neue Kraft.

Ein Auto mit Kartoffeln betanken? Kein Problem: Niedersachsen liefert den richtigen Energiemix – ob Bio, Wind oder Solar.

Schon entdeckt?

Auch in dieser Anzeige ist ein Pferdeapfel versteckt: als kleiner Hinweis auf die hohe Produktivität in unserem Bundesland. Denn auch bei Innovationen gilt: Wichtig ist, was am Ende rauskommt

www.innovatives.niedersachsen.de

Forschungsintensiv.

Wir haben die Atomuhr und sind trotzdem unserer Zeit voraus: Bei uns wird halt rund um die Uhr an Innovationen gefellt – in der forschungsintensivsten Region Europas.

Gesundheit!

In der modernen Medizin wird nicht nur Latein, sondern auch Niedersächsisch gesprochen. Denn vom Hörgerät bis zur Hightsch-Prothese: Unsere Innovationen geben neue Lebensqualität.

